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Density-functional theory of inhomogeneous systems of hard spherocylinders
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The smectic-A phase boundaries of a hard-spherocylinder fluid are calculated using a density-functional
theory based on one proposed earlier by Somoza and Tarazona@Phys. Rev. A41, 965~1990!#. Our calculations
do not employ the translation-rotation decoupling approximation used in previous density-functional theories.
The calculated phase boundaries agree well with computer simulation results up to aspect ratiosL/D'5 and
are in better agreement with the simulations than are previous theories. We generalize the model fluid by
including long-range interactions with quadrupolar orientational symmetry, which are taken into account by
mean-field approximation. For sufficiently large strength, these interactions produce a smectic-C phase, which
undergoes either a continuous or weakly first-order transition to the smectic-A phase. The theory and numerical
methods discussed here can be applied to the analysis of interfacial phenomena.

PACS number~s!: 64.70.Md, 05.70.Fh
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I. INTRODUCTION

It was first shown by Onsager@1# that a fluid of hard
spherocylinders could undergo a nematic (N) –isotropic ~I!
phase transition. Onsager’s analysis was based on a low
order~i.e., second-order! virial approximation to the free en
ergy, which is accurate only in the limit of very long mo
ecules. In recent years, computer-simulation studies h
shown that hard spherocylinders of finite length exhibit
I -N transition, as well as transitions to the layered smectiA
(SmA) phase@2,3#. The hard-spherocylinder model has al
been studied using density-functional theory~DFT! @4–10#.
Although based on approximations that generally yield
sults less accurate than those obtained from simulati
DFT has the advantage of being less time consuming,
ticularly in determining phase boundaries and for study
inhomogeneous systems.

However, as recently pointed out by van Roijet al. @8#,
previous DFT studies of smectic phases in ha
spherocylinder fluids have made the unphysical assump
that translational and orientational ordering are decoup
@5,6#. This approximation was dropped in a DFT analy
considered in Ref.@8#, although the latter work was restricte
to the low-density Onsager theory. One of the objectives
the present work is to remove the translation-orientation
coupling assumption of earlier DFT theories@5,6# and apply
the resulting theory to hard spherocylinders of arbitrary d
sity and elongation using a more accurate DFT approxim
tion, which can also be used to study inhomogeneous
tems with general spatial variations in order parameter
director orientation. We show that the coupling between o
entational and translational degrees of freedom, which is
tainly present, does not quantitatively affect the bulk ph
behavior and that the theory reproduces well theliquid phase
boundaries of this system obtained by Monte Carlo simu
PRE 621063-651X/2000/62~3!/3708~11!/$15.00
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tions in Ref. @2#. However, the coupling is expected to b
more relevant in other situations, such as wetting and
choring phenomena at interfaces@11#, where the present ap
proximation can be used directly.

The practical relevance of a hard-core model to the st
of real liquid crystals is based on the idea that repuls
intermolecular forces are mainly responsible for fluid stru
ture, a notion deeply grounded in modern perturbation th
ries of fluids@12#. Implementation of perturbation theory fo
liquid crystals with more realistic intermolecular potentia
requires an accurate assessment of the behavior of a sui
reference model such as the hard-spherocylinder fluid. T
model has advantages with respect to other hard-core mo
of liquid crystals used in recent studies, such as hard e
soids, since the latter model does not exhibit a Sm-A phase
@13#.

A second objective of the present work is to test the s
ability of the model as a reference system by including lon
range intermolecular interactions with quadrupolar orien
tional symmetry, which are treated by a simple mean-fi
approximation. Several studies, beginning with work
Priest @14#, have shown that interactions of this symmet
are able to induce formation of the smectic-C (Sm-C) phase,
which is characterized by an average tilt of the molecu
axes with respect to the smectic layer normal@15#. The same
type of interaction has also been shown to account for til
textures at free surfaces of nematic liquid crystals@16,17#.
Recently, there have been several DFT studies of SC
phases based on models incorporating both hard-core
quadrupolar interactions, although these works have b
limited either by restricting the molecules to be in perfe
parallel alignment@18# or by using a hard-ellipsoid model fo
the repulsive cores@19#. The model used in Ref.@19# has the
disadvantage that additional long-range interactions of
propriate orientational symmetry must be included to gen
3708 ©2000 The American Physical Society
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ate smectic ordering. In consequence, this model did not
duce a N– Sm-A2Sm-C ~NAC! point where the three
orientationally ordered phases simultaneously coexist,
also generated phase boundaries~e.g., Sm-A– Sm-C) having
a too strongly first-order character. The present model, wh
is closely akin to that of Ref.@18#, removes most of thes
defects, although we do find that the Sm-A– Sm-C transition
changes from continuous to first order with increasing m
lecular elongation. In contrast with Ref.@18#, due to relaxing
the constraint of perfect molecular alignment, we find th
the N– Sm-A transition is first order, in agreement with th
simulations of Ref.@2#.

As mentioned before, the ultimate goal of our studies is
develop an accurate and numerically tractable DFT the
for realistic models of liquid crystals that can be applied
more complex situations, such as those due to the pres
of interfaces and accompanying phenomena like wetting
anchoring. Although the present work is confined to t
analysis of macroscopically uniform liquids, the smec
phases examined here exhibit spatial modulation and~in the
case of Sm-C) tilt ordering, and therefore involve most o
the same complexities occurring in the presence of in
faces. Here we extend and refine several techniques de
oped in previous work@19,20# to facilitate the numerica
solution of the DFT, which will also be applicable to mo
general studies involving interfaces.

II. THEORY FOR HARD SPHEROCYLINDERS

A. Theoretical model

Let r(r ,V̂) be the one-molecule density distribution, gi
ing the mean local density of molecules at positionr and
with orientationV̂[(u,f) of their principal axes. Without
loss of generality this distribution can be factorized
r(r ,V̂)5r(r ) f (r ,V̂), wherer(r ) is the number density dis
tribution and f (r ,V̂) accounts for the distribution of orien
tations. The decoupling of translational and orientational
grees of freedom at this level~which we will not assume!
amounts to considering a spatially uniformf (r ,V̂)5 f (V̂).
For phases with orientational order this function is peak
around some directionn̂, called the director.

In density-functional theory one writes a free-ener
functional of the one-molecule density distribution,F@r#,
which can be split into idealF id@r# and excessFex@r# parts,
F@r#5F id@r#1Fex@r#, where

F id@r#5kTE E drdV̂r~r ,V̂!$ ln@L3r~r ,V̂!#21% ~1!

with L the thermal wavelength,k Boltzmann’s constant, and
T the temperature. The excess part, which contains the e
of interactions, must be approximated for lack of an ex
expression. A popular approximation, first introduced
spatially uniform phases@for which r(r ,V̂)5r f (V̂), r be-
ing the mean number density# is thedecoupling approxima-
tion ~DA! @4,21,22#. The idea behind the DA is to map th
free energy in terms of an effective system of hard sphe
~HS’s! of diameters:
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Fex@r#

N
5

Cex
HS~rHS!

Vexc
HS E dV̂E dV̂8 f ~V̂! f ~V̂8!

3E drVexc~r ,V̂,V̂8!, ~2!

whereVexc
HS is the excluded volume of two spheres~equal to

4ps3/3), Vexc(r ,V̂,V̂8) is the ~orientation-dependent! ex-
cluded volume function of two hard spherocylinders

Vexc~r ,V̂,V̂8!5H 1 if r is within the excluded volume

0 otherwise,
~3!

and Cex
HS(r) is the excess free energy per molecule of

system of hard spheres. The effective densityrHS is usually
chosen such that the packing fractions of the effective ha
sphere system and the real hard spherocylinders are
same. This condition alone is sufficient since the free ene
of hard spheres is a function only of the packing fractio
i.e., of the productrHSs

3, but not ofrHS or s3 separately.
The DA is equivalent to a scaling of all virial coefficients o
order higher than 2 in terms of those of a system of h
spheres@23#.

Since our aim in this paper is the study of highly nonu
form liquid-crystalline systems~bulk smectic phases being
particular case!, a proper non-local density-functional ap
proximation must be used. One may envisage several w
to generalize the DA in order to make it nonlocal@18#. Fol-
lowing Somoza and Tarazona~ST! @5#, we use the general
ized decoupling approximation

Fex@r#5E dr
Cex

PHE
„r̄~r !…

r̄PHE~r !
E dV̂r~r ,V̂!

3E E dr 8dV̂8r~r 8,V̂8!Vexc~r2r 8,V̂,V̂8!.

~4!

HereCex
PHE(r) is the~known! excess free energy of an effec

tive system of parallel hard ellipsoids,r̄(r ) is a weighted
density that takes into account the nonlocal structure@24#,
and

r̄PHE~r !5E dr 9r~r 9!Vexc
PHE~r2r 9! ~5!

is an average density, withVexc
PHE(r ) being the excluded vol-

ume function of two such ellipsoids@see Eq.~12! below#.
The choice of a system of parallel ellipsoids as a refere
system is particularly convenient because all of its proper
can be mapped onto those of a system of hard sph
~whose properties are well documented! with an appropriate
scaling along the direction of alignment. Lets i and s' be
the length and breadth of the ellipsoids, respectively. T
weighted density is then given by@13#

r̄~r !5E dsw~ usu; r̄~r !seq
3 !r~r1s̃•s!, ~6!

where seq[(s'
2 s i)

1/3 is the equivalent hard-sphere diam

eter, w a weight function, ands̃ a tensor. The integration
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variables is dimensionless. The tensors̃ is diagonal in the
principal-axis frame set by the directorn̂, with components
s i along the axis parallel ton̂ ands' along each axis per
pendicular ton̂. A sensible choice of weight function ha
been discussed in detail in@24#. Here it suffices to say thatw

may be approximated by a quadratic polynomial inr̄(r )seq
3

which allows us to express the weighted densityr̄(r ) in
terms of three average densitiesr̄n(r ), n50,1,2,

r̄n~r !5E dswn~ usu!r~r1s̃•s!. ~7!

Formulas forwn(s) can be found in@24#. We simply note
that w0(s)53Q(12s)/4p is a step function and conse
quently r̄0(r ) is an average over an ellipsoidal volume. F
nally, as mentioned before,Cex

PHE( r̄) is the excess free en
ergy per molecule of the fluid of parallel hard ellipsoid
which is equal to that of hard spheres with diameterseq,
evaluated at the weighted densityr̄(r ). This can be accu-
rately represented by the Carnahan-Starling expression@12#.

When the density is uniform, Eq.~4! reduces to the DA,
Eq. ~2!. The ST theory, which can be viewed again as
mapping onto some reference system, in this case a co
sponding system of parallel hard ellipsoids, can be applie
different hard-body systems and, in particular, was origina
used for hard spherocylinders@5#, giving reasonable agree
ment with simulations~see Sec. IV below!.

For a given type of spherocylinder, the question arises
to what are the optimum ellipsoid molecular parameterss i
ands' @which are needed separately in Eq.~6!# to perform
the mapping. In contrast with the simpler DA theory, whi
requires only one condition, here we therefore need two c
ditions. As a first choice we can start by demanding eq
molecular volumev ~hence equal packing fraction! and
length-to-breadth ratio for the hard ellipsoids and ha
spherocylinders~HSPC’s!, i.e.,

vHSPC5vHE,
L1D

D
5

s i

s'

, ~8!

whereL andD are the length of the cylinder and the diame
of the spherical caps, respectively. The condition above
equal length-to-breadth ratio is simpler than the condit
originally used by ST, which was based on equal princi
values of an averaged inertia tensor. SincevHSPC5pD3g/6,
with g[113x/2 and x5L/D, and vHE5ps'

2 s i/6
[pseq

3 /6, the above equations provide explicit formulas
obtain the relevant dimensions of the effective ellipsoid fo
given value ofx5L/D of the original spherocylinder:

s i

seq
5~11x!2/3,

s'

seq
5

1

~11x!1/3
. ~9!

For a given value of the average molecular densityr, the
excess free energyCex

PHE(r) is to be evaluated at the packin
fraction r* [rvHSPC5(p/6)rseq

3 .

B. Calculation of the excess free energy

Let us consider a liquid crystal structured along some p
ticular direction; we will choose that direction as thez axis
,

a
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and write all densities as a function ofz only. Let us work
out the different factors in Eq.~4! and see how they can b
simplified. The averaged densityr̄PHE(r ) is written as fol-
lows:

r̄PHE~z!5E
2`

`

dz9r~z9!E dR9Vexc
PHE~z2z9,R2R9!

~10!

with R5(x,y). Since

Vexc
PHE~z,R!5H 1, uzu,s iA12

x21y2

s'
2

0, otherwise,

~11!

we have

E dR9Vexc
PHE~z2z9,R2R9!

5H ps'
2 F12S z2z9

s i
D 2G , 0<uz2z9u<s i

0, uz2z9u.s i ,

~12!

and it can be readily shown that

r̄PHE~z!5S 4p

3
seq

3 D r̄0~z!. ~13!

We now turn to the factor in Eq.~4! containing the double
angular integral. This factor can be written in the form

E dV̂r~r ,V̂!E E dR8dV̂8r~r 8,V̂8!Vexc~r2r 8,V̂,V̂8!

[r~z!r~z8!ṽSPC~z,z8;@ f # !. ~14!

Here ṽSPC is an effective potential that depends on the o
entational distribution,

ṽSPC~z,z8;@ f # !5E dV̂E dV̂8 f ~z,V̂! f ~z8,V̂8!

3E dR8Vexc~z2z8,R8,V̂,V̂8!. ~15!

Using ideas proposed in@20# for the Gay-Berne model, we
first parametrize the angular distribution functionf (z,V̂) in
terms of the three order parameters

h~z!5 f 20~z!5E dV̂P2~cosu! f ~z,V̂!,

s~z!5S 8

3D 1/2

f 22~z!5E dV̂ sin2 u cos 2f f ~z,V̂!,

n~z!52S 8

3D 1/2

f 21~z!5E dV̂ sin 2u cosf f ~z,V̂!,

~16!
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whereP2(x) is the second-order Legendre polynomial, a
f lm are the coefficients of a general spherical-harmonic
pansion forf (z,V̂) in a space-fixed frame. For axially sym
metric molecules, this expansion reads

f ~z,V̂!5(
l 50

`

(
m52 l

l S 2l 11

4p D 1/2

f lm~z!Ylm* ~V̂!. ~17!

A biaxial state, such as is expected whenever a tilted dire
configuration occurs, is characterized by nonvanishing v
ues of s and n. The actual parametrization that we ha
used,

f ~z,V̂!5 f „V̂;h~z!,s~z!,n~z!…, ~18!

considers only order parameters corresponding to the
spacel 52, and is written as

f ~V̂;h,s,n!

5
eL1P2(cosu)1L2 sin 2u cosf1L3 sin2 u cos 2f

E dV̂eL1P2(cosu)1L2 sin 2u cosf1L3 sin2 u cos 2f

.

~19!

Here $L i% are ~in principle unknown! functions ofz, which
can be thought of as external one-body potentials that se
an orientational structure in the system, characterized by
three order parameters. For each value ofz these potentials
can be obtained by inverting Eqs.~16! with f (z,V̂) given by
Eq. ~19!. Thus,z merely plays the role of an index. Equatio
~15! for the effective potentialṽSPC then implies

ṽSPC~z,z8;@ f # !5 ṽSPC~z,z8;@h,s,n#!. ~20!

Now comes the important approximation in our mod
which consists of writing

ṽSPC~z,z8;@h,s,n#!' ṽeffS z2z8;
h~z!1h~z8!

2
,

s~z!1s~z8!

2
,
n~z!1n~z8!

2 D ,

~21!

where we define an effectivelocal potential as

ṽeff~z;h,s,n![E dV̂E dV̂8 f ~V̂;h,s,n! f ~V̂8;h,s,n!

3E dRVexc~z,R,V̂,V̂8!. ~22!

Equations~21! and ~22! approximately incorporate nonloca
effects due to spatial inhomogeneities in the order par
eters and are exact for a uniform phase. Note that in the l
of a perfectly ordered smectic the approximation also
comes exact since the orientational profile is expected to
independent ofz. Also note that this approximation is exa
if one assumes a decoupling between orientations and p
-

or
l-

b-

up
he

,

-
it
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e
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tions at the level of the one-particle density. The numeri
calculation ofṽeff is explained in Appendix section 1.

Although a spherical-harmonic expansion of the ha
spherocylinder interaction would contain terms with high
angular momentum valuesl and therefore the effective po
tential should be expressed in terms of additional order
rameters, it is clear that, within the approximation~19! for
the orientational distribution function~which should also in-
clude these additional order parameters!, the effective poten-
tial becomes a functional only of the order parametersh,s,
andn.

Our approximation for the excess free-energy functio
is then

Fex@r#5
A

@~4p/3!seq
3 #
E

2`

`

dzr~z!S Cex
PHE

„r̄~z!…

r̄0~z!
D

3E
2`

`

dz8r~z8!ṽeffS z2z8;
h~z!1h~z8!

2
,

m~z!1m~z8!

2
,
n~z!1n~z8!

2 D , ~23!

whereA is area of the system in thexy plane. The above
description is valid whenever the system of spherocylind
is spatially structured along some direction, which we ha
taken as thez direction. In principle, it could be used even
the director is at an anglec with respect to this direction
since we have allowed for general values of the order par
etersh,s, andn. However, this situation requires modifyin
~with respect to the untilted case! the calculation of the
weighted density by Eq.~6!, since the principal-axis frame o
the tensors̃ is tilted from the space-fixed Cartesian frame
the anglec. It is not difficult to demonstrate~see Appendix
section 2! that the averaged densityr̄(z) for a system with a
tilted director configuration can be written in the same fo
as in the case of a nontilted configuration but with an eff
tive s i given by

s i
eff5s iAcos2 c1

s'
2

s i
2

sin2 c, ~24!

which corrects a relation used in Ref.@19#. The prescription
outlined here for the reference hard core is particularly use
in that it is general and can be used in studies of liqu
crystal interfaces in which the interesting phenomenology
associated with inhomogeneities in both density and orie
tion of the director across the interfaces.

C. Rotational entropy

Having written the excess term of the free energy in ter
of the threel 52 order-parameter components we now tu
to the evaluation of the rotational entropy. The ideal fr
energy of Eq.~1! can be split into translational and rotation
parts,

bF id@r#

A
5E

2`

`

dzr~z!@ ln L3r~z!21#2E
2`

`

dzr~z!Srot~z!,

~25!
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whereb51/kT and the local rotational entropy per partic
is

Srot~z!52E dV̂f ~z,V̂!ln 4p f ~z,V̂!. ~26!

In @19# it was shown that, iff (z,V̂) is given by Eq.~19!,
then the rotational entropy can be expressed exactly in te
of the order parametersh,s,n as

Srot~z!5L1~z!h~z!1L2~z!s~z!1L3~z!n~z!2 lnE dV̂

4p

3eL1(z)P2(cosu)1L2(z)sin 2u cosf1L3(z)sin2 u cos 2f.

~27!

To evaluate this entropy for a set of order parametersh,s,n
we use the scheme explained in the previous section an
Appendix section 1 to first obtain a table of the numb
L1 ,L2 ,L3 as a function ofh,s,n on a three-dimensiona
mesh; this table is then interpolated as necessary. Note
this table is calculated once and for all, and that it is a
used for the evaluation of the effective potential~see Appen-
dix section 1!.

III. ADDITION OF A LINEAR QUADRUPOLE

In this section we augment our model by including a lon
range anisotropic term. As mentioned in the Introducti
our aim is to test the capability of the hard-core model a
reference system to describe general nonuniform struct
such as smectic-C phases. A possible molecular mechanis
to produce a tilted director in these phases is a term w
quadrupolar symmetry.

We assume each molecule carries a linear quadrupol
magnitudeAuQu; the quadrupolar energy associated with tw
such molecules is taken to be

VQ~r ,V̂,V̂8!5Qv~r !G~ r̂ ,V̂,V̂8! ~28!

with

G~ r̂ ,V̂,V̂8!5125~V̂• r̂ !225~V̂8• r̂ !2

12~V̂•V̂8!2135~V̂• r̂ !2~V̂8• r̂ !2

220~V̂• r̂ !~V̂8• r̂ !~V̂•V̂8!, ~29!

where r̂5r /r and r 5ur u. The choice of the radial function
v(r ) is not critical from the qualitative point of view, sinc
the mechanism giving rise to the molecular tilt comes fro
the angular symmetry of the interactions. Following our p
vious studies@19# we take

v~r !5H F S seq

r D 12

2S seq

r D 6G , r .21/6seq

21/4, r ,21/6seq.

~30!

Neglecting anisotropic correlations originating from the ha
core, the free energy acquires a mean-field contribution fr
this anisotropic interaction, which is given by
s

in
s

at
o

-
,
a
es

h

of

-

m

FQ@r#5
1

2E E drdr 8E E dV̂dV̂8r~r ,V̂!

3r~r 8,V̂8!VQ~r2r 8,V̂,V̂8!. ~31!

The results of the angular integrals in Eq.~31! can be easily
expressed in terms of the order parametersh,s, and n by
performing the integral over the relative planar coordin
R82R:

FQ@r#

A
5

2Q

3 E
2`

`

dzr~z!E
2`

`

dz8r~z8!ṽ~z2z8!

3S 6h~z!h~z8!1
3

4
s~z!s~z8!23n~z!n~z8! D ,

~32!

where

ṽ~z!52pE
uzu

`

drrv~r !P4~z/r ! ~33!

andP4(x) is the fourth-order Legendre polynomial.

IV. RESULTS

A. Hard spherocylinders

We have calculated the coexistence densities for
N– Sm-A, N-I , and I – Sm-A transitions of hard spherocyl
inders of length-to-breadth ratios 3.5<L/D<10. As usual
this was done by computing the free-energy branches co
sponding to the different phases involved and applying
Maxwell construction. For a given mean densityr0, the free
energy of the Sm-A phase was minimized using a fou
parameter variational family,

r~z!5r0

el cos(2pz/d)

1

dE0

d

dzel cos(2pz/d)

,

h~z!5h0

el8 cos(2pz/d)

1

dE0

d

dzel8 cos(2pz/d)

, ~34!

where the variational parameters arel,l8, which give the
amplitude of the spatial modulation in density and order
rameter, respectively,h0, the mean order parameter, and t
smectic layer spacingd. These functions can also describ
the nematic phase for whichl5l850. Free-energy minima
were obtained using a standard Newton-Raphson minim
tion algorithm.

Tables I and II contain our results, which are compar
with the original calculations by ST@5# of the same model,
with theoretical results by Graf and Lo¨wen@10#, and with the
Monte Carlo simulations of Bolhuis and Frenkel@2#. Our
results for theI -N transition agree closely with those of ST
which in turn are identical to those obtained by Lee@4#; note
that the calculations in Refs.@4,5# did not restrict the angula
distribution function to thel 52 subspace as was done he
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in Eq. ~19!. The present results for the Sm-A phase bound-
aries differ from those of ST and are significantly closer
the simulations, primarily due to the different criteria used
choose the reference parallel ellipsoids, the relevance
which was recognized by ST. Also, our results are supe
to those reported by Graf and Lo¨wen @9# using a modified
weighted-density functional theory, which predicts a~wrong!
positive slope of theN– Sm-A phase boundary in the
density-L/D phase diagram. In a subsequent paper@10#, Graf
and Löwen present a hybrid theoretical approach which co
bines scaled-particle and cell-theory concepts. This the
improves the results for theN– Sm-A transition in the sense
that the slope is now correct, but the predicted density ju
is considerably overestimated.

We note that forL/D53.5, the Sm-A phase coexists with
the isotropic phase while forL/D>3.8, we find bothI -N
andN– Sm-A transitions. Hence theI –N– Sm-A triple point
is predicted to lie between these values ofL/D, in good
agreement with the simulation resultL/D'3.7 @2#.

Note that our results were obtainedwithout the usual de-
coupling assumptionf (z,V̂)[ f (V̂) used by ST and othe
workers~Graf and Löwen @9,10# and Poniewierski and Ho
lyst @6#!; however, we find that the coexistence densit
change by less than 0.2% forL/D55 when making this
assumption. This insensitivity of the coexistence results
the decoupling assumption is not inconsistent with the st
ment by van Roijet al. @8# concerning the strong spatia

TABLE I. Comparison of the predictions for the coexisten
packing fractionsr* [rvHSPC of isotropic (r I* ) and nematic (rN* )

phases at theI -N transition, and nematic (rN*
8) and smectic-A

(rSm* ) phases at theN-SmA transition from different theories: PW
present work; ST, original Somoza and Tarazona theory@5#; GL,
Graf and Löwen theory@10#; MC, results from Monte Carlo simu
lations of Bolhuis and Frenkel@2#. The asterisk indicates estimate
from figures in the source papers.n indicates that the correspondin
phase is not stable; in this case there is a directI – Sm-A transition
at the indicated coexistence packing fractions.

L/D Theory r I* rN* rN*
8 rSm*

3.5 PW 0.483 n n 0.525
ST 0.487 0.499 0.537 0.584
GL 0.416 n n 0.554
MC 0.491* n n 0.546*

3.8 PW 0.468 0.481 0.485 0.515
ST 0.466 0.480 0.526 0.580
GL 0.395* 0.453* 0.453* 0.541*
MC 0.474 0.474 0.484 0.528

4 PW 0.455 0.469 0.483 0.511
ST 0.454 0.468 0.513* 0.559*
GL 0.388* 0.447* 0.454* 0.535*
MC 0.462* 0.462* 0.479 0.518

4.5 PW 0.426 0.442 0.480 0.506
ST 0.425 0.441 0.521* 0.568*
GL 0.367* 0.426* 0.455* 0.529*
MC 0.432* 0.432* 0.466* 0.500*
of
r

-
ry

p

s

o
e-

modulation of the orientational distribution function in th
Sm-A phase of HSPC’s: our results show that the variat
of h(z) along a smectic period is as high as;20%. How-
ever, in the neighborhood of the smectic layers, where
number density is highly peaked and the contribution to
free energy is largest, the variation ofh(z) over the range
where the density is nonzero is significantly smaller th
20% and, as a consequence, the free-energy density is
sensitive to the decoupling assumption.

B. Hard spherocylinders with quadrupolar interactions

In the Sm-C phase we have to allow for general vari
tions of the three order parametersh,s,n to describe tilted
director configurations. From a practical point of view it
more convenient to transform to the director~i.e., principal-
axis! reference frame by rotating by an anglec ~the tilt
angle! to obtainhp , the degree of order around the directo
and sp , the biaxial order parameter~see Appendix section
1!. A simplification can be introduced by assuming that t
biaxial order parameter is zero. The relation between the
sets of variables is then

h~z!5hp~z!P2~cosc!,

s~z!5hp~z!sin2 c,

n~z!5hp~z!sin 2c. ~35!

The variational parameters, included in the parametric
pressions forr(z) andhp(z), are nowc, h0p , l, l9, andd,
with

TABLE II. As in Table I but for different values of the length
to-breadth ratio.

L/D Theory r I* rN* rN*
8 rSm*

5 PW 0.401 0.418 0.477 0.503
ST 0.400 0.417 0.507 0.554
GL 0.339* 0.405* 0.449* 0.530*
MC 0.398 0.398 0.453 0.482

6 PW 0.358 0.377 0.473 0.496
ST 0.357 0.377
GL 0.443* 0.525*
MC 0.439* 0.468*

7 PW 0.324 0.344 0.470 0.497
ST 0.322 0.344
GL 0.442* 0.525*
MC

10 PW 0.251 0.273 0.465 0.493
ST 0.251 0.275
GL
MC 0.245* 0.268* 0.440* 0.450*
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hp~z!5h0p

el9 cos(2pz/d)

1

dE0

d

dzel9 cos(2pz/d)

. ~36!

Figure 1 shows the behavior of the tilt anglec with density
for different values of the quadrupole strengthQ/kT and for
molecules of aspect ratioL/D55. Note that, for a given
value of the quadrupole strength, the tilt angle eventua
adopts a nonzero value as the density is increased, w
indicates a transition from a Sm-A to a Sm-C phase. Given
that the change inc is continuous in all cases it may b
expected that the transition is second order. This is corro
rated by examining the free energy and searching for hys
esis loops, which are nonexistent. As is intuitively expect
stronger quadrupoles induce the tilted smectic phase to
pear at lower densities. The values of the tilt angle cha
with density but are of order 10°. This is to be compar
with the tilt angles obtained in@19# which were in the range
35° – 40°. Our present~lower! values, which are more in
accord with experimental findings@25#, are due to the bette
treatment of the hard core. The agreement with experime
also better concerning the second-order nature of the tra
tion obtained with the present theory, in contrast with t
first-order behavior predicted by Velascoet al. @19#. On the
other hand, we find that the order of the transition chan
when considering more elongated molecules. Figure 2 sh

FIG. 1. Tilt angle, in degrees, versus reduced mean density
different values of2Q/kT and molecular aspect ratioL/D55.
Continuous lines are a guide to the eye.

FIG. 2. As in Fig. 1 but for molecular aspect ratioL/D56.
y
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that for an aspect ratioL/D56 the character of the transitio
changes over from second to first order as the quadru
strength is decreased. The first-order nature of the trans
is signaled by the discontinuous change in tilt angle at so
density that depends on the quadrupole strength, and by
teresis loops present in the free energy. This change in
nature of the transition is associated with the existence
tricritical point. Note, however, that the tilt-angle jump
less than 10°, so the transition could be considered wea
first order. As the molecular elongation is further increas
the transition becomes first order at lower densities u
eventually the whole Sm-A– Sm-C transition line is first or-
der; Fig. 3 shows this for the aspect ratioL/D510.

The above results were obtained assuming that the o
molecule distribution function is decoupled, i.e.,l950,
since this reduces the computation time considerably. W
this approximation is relaxed some quantitative changes
cur. This is indicated in Fig. 4 forL/D55, which shows that
the transition density changes by a few percent, in line w
the changes observed in the system of pure hard sphero
inders. However, these changes have no impact whatso
on the phase behavior from a qualitative point of view.

The complete phase diagram, in the plane (r0 ,Q/kT), is
shown in Fig. 5 for elongationL/D55. Note that for this
case the Sm-A– Sm-C transition is always continuous. Fig

or FIG. 3. As in Fig. 1 but for molecular aspect ratioL/D510.

FIG. 4. Tilt angle, in degrees, versus reduced mean density
Q/kT520.4875 and molecular aspect ratioL/D55. Dots are re-
sults obtained with the decoupling assumption, whereas trian
are results obtained without such an assumption. Continuous
are only a guide to the eye.
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ure 5 also shows that the Sm-A phase becomes less stab
with increasing quadrupole strength and eventually is p
empted by the first-orderN– Sm-C transition.

Finally, Fig. 6 shows the effect of density and quadrup
strength on the equilibrium layer thicknessd for molecular
elongationL/D55. The data show the existence of two r
gimes of different average slope, corresponding to the
smectic phases. For a given value of the quadrupole stren
the effect of density on layer thickness in the case of
Sm-A phase is relatively minor, reflecting the low value
the layer compressibility in this system~comparable to tha
of solids!. In the tilted Sm-C phase, however, molecules a
tilting and the tilt angle becomes higher as the density
creases; therefore the change in layer thickness is more
nounced as it reflects a geometric effect. Likewise, a hig
quadrupole strength favors thinner smectic layers as the m
ecules are more tilted.

V. CONCLUSIONS

In summary, we have formulated a density-function
theory for inhomogeneous liquid crystals composed of h
spherocylinders having additional long-range interactions
quadrupolar orientational symmetry. Our treatment of
hard-core contribution to the free energy is essentially t

FIG. 5. Phase diagram in the density-quadrupole plane
L/D55. Shadowed region indicates two-phase coexistence.

FIG. 6. Smectic layer spacing versus mean density for differ
values of2Q/kT and molecular aspect ratioL/D55. Continuous
lines are only a guide to the eye.
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introduced by ST@5# some years ago, but using a simpl
prescription for the underlying reference fluid of paral
hard ellipsoids as well as removing the translation-rotat
decoupling approximation. The long-range quadrupolar
teractions are treated by a simple mean-field approximat
We have also applied several approximations to significa
simplify the numerical calculations. One is the use, which
quite common, of exponential parametrizations of the d
sity and orientational order parameters in modulated pha
@see Eqs.~34! and~36!#. The other ‘‘numerical’’ approxima-
tions are the truncation of the angular distribution function
the l 52 subspace@Eq. ~19!# and use of the ‘‘local’’ approxi-
mation @Eqs. ~21! and ~22!# for the hard-spherocylinder ef
fective potential.

We first applied the theory to calculate the bulk liqu
phase boundaries of pure hard spherocylinders. The th
agrees well with simulation data@2# up to elongationL/D
'5, although our results for both the mean density and d
sity gap at theN– Sm-A transition deteriorate at largerL/D.
The deterioration is much weaker for theI -N transition, in
which case the present theory is in close agreement with
original DA calculations of Lee@4#. This implies that use of
the truncated spherical-harmonic representation of the an
lar distribution function~which is the only difference be
tween our calculations and those of Lee for the uniform ne
atic phase! does not introduce significant error. While it
difficult to assess whether the discrepancies for theN– Sm-A
transition are due to the other numerical approximatio
made here or to the basic structure of the density-functio
theory itself, the relative accuracy of the former is suppor
by calculations elsewhere@20#. This suggests that the mai
limitations are in the underlying density-functional treatme
@5# of the inhomogeneous hard-spherocylinder fluid. Non
theless, the accuracy of the theory for elongations up
L/D'5, which are realistic for typical thermotropic liqui
crystals, is encouraging.

We have not made the translation-rotation decoupling
proximation in our calculations, but have demonstrated t
this approximation has quite minor effects on bulk pha
behavior. This is due to the fact that the spatial modulat
of the full distribution functionr(z,V̂)5r(z) f (z,V̂) over a
smectic period is due primarily to the number densityr(z).
It should be noted that the parametrization employed in E
~19! and ~34! for f (z,V̂) is not capable of producing th
bimodal behavior observed in computer simulations@8,26#.
Since the bimodality occurs only at values ofz between den-
sity maxima, its influence on bulk phase behavior sho
again be very weak.

On including interactions of quadrupolar symmetry, w
have shown that the theory can also generate a tilted sme
C phase. In contrast with the interaction model used in R
@19#, the present model yields either a continuous orweakly
first-order Sm-A– Sm-C transition as well as a NAC point
While the Sm-A– Sm-C transition is most often found ex
perimentally to be continuous, first-order transitions ha
been observed for some optically active compounds and t
occurrence is compatible with phenomenological argume
@27#. The present results for SmC behavior are similar to
those obtained in Ref.@18#, although all transitions in the
latter work were found to be continuous. In the present wo
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both theN– Sm-A and N– Sm-C transitions are first order
hence the NAC point is either a critical end point or a trip
point, depending on whether the Sm-A– Sm-C line is con-
tinuous or first order, respectively. One drawback that
shared with Ref.@18# is the weak positive slope of th
N– Sm-A andN– Sm-C coexistence lines in the (r0 ,Q/kT)
plane, seen in Fig. 5, which produces transitions from SmA
or Sm-C to nematic ondecreasingtemperature at fixedr0
andQ. A related drawback is the fact that the Sm-A–Sm-C
tricritical point develops on decreasinguQu/kT, so that~at
fixed Q) the transition between those phases changes f
continuous to first order withincreasing temperature. We
attribute these features to the particular interaction mo
used here rather than to approximations in the theory suc
its lack of fluctuation effects. True thermotropic liquid cry
tals should include additional long-range interactions~both
isotropic and anisotropic! besides the quadrupolar term co
sidered here~see, e.g.,@17,19,20#!, which would result in
destabilizing the lower-symmetry phases at high tempe
tures.

We have demonstrated that the theory can feasibly
applied to inhomogeneous liquid crystals with both stron
anisotropic repulsive and attractive interactions. Our w
has considered only systems with spatial modulation in
direction, namely, theliquid smectic phases. Further study
required to extend the theory to crystalline phases with m
than one direction of modulation. The methods describ
here can be applied directly to the study of liquid interfac
having arbitrary spatial variation of the densities, order
rameters, and tilt angle in thez direction. Most of the nu-
merical techniques described here can be used without m
fication in such cases, the only exceptions being
parametrizations in Eqs.~34! and ~36! of the densities and
order parameters.

APPENDIX

1. Calculation of the effective local potentialṽeff

The effective local potential

ṽeff~z;h,s,n!5E dV̂E dV̂8 f ~V̂;h,s,n! f ~V̂8;h,s,n!

3E dRVexc~z,R,V̂,V̂8! ~A1!

can be numerically computed as follows. Let us first consi
the spatial integral

E dRVexc~z,R,V̂,V̂8!. ~A2!

This is numerically equal to the area of a planar section
the excluded volume of two spherocylinders, a complica
volume that depends on the orientations of the spherocy
ders, such that their separation in the thez direction isz. In
principle, this area could be computed analytically and in
grated numerically overV̂,V̂8 to give the effective potential
We have chosen, however, to represent the whole effec
s

m

el
as

a-

e
y
k
e

re
d
s
-

di-
e

r

f
d
n-

-

ve

potential~A1! as a Fourier series@6#. The coefficients of the
resulting series are functions of the order parametersh,s,n
which we have tabulated.

We write

ṽeff~z;h,s,n!5 (
n52`

`

vn~h,s,n!eiknz, kn5
np

L1D
,

~A3!

which is a Fourier representation of the function in the int
val @2L2D,L1D# @note that this is the interval where th
function has nonzero values; the periodic replicas outs
this interval generated by Eq.~A3! are of no relevance#. The
coefficientsvn are given by

vn~h,s,n!5
1

2~L1D !
E

2L2D

L1D

dze2 iknz

3S E dV̂E dV̂8 f ~V̂;h,s,n! f ~V̂8;h,s,n!

3E dRVexc~z,R,V̂,V̂8! D
5

1

2~L1D !
E dV̂E dV̂8 f ~V̂;h,s,n!

3 f ~V̂8;h,s,n!E
exc

dre2 iknz, ~A4!

where the integral overr now extends over the exclude
volume. This integral is much easier to calculate than tha
Eq. ~A2!. In order to exploit the symmetries of the exclude
volume, it is convenient to perform a rotation of axes to
frame with axes along the principal axes$ûi% of the excluded
volume,

û15
V̂3V̂8

uV̂3V̂8u
, û25

V̂1V̂8

uV̂1V̂8u
, û35

V̂2V̂8

uV̂2V̂8u
.

~A5!

Since the Jacobian of this transformation is unity, it follow
that

E
exc

dre2 iknz5E
exc

due2 ikn•u, ~A6!

where kn is a vector of magnitudekn in the space-fixedz
direction. The limits of integration are easily written in th
frame and the integrals can be evaluated by Gaussian qua
ture. The wave vectorkn becomes angle dependent wh
expressed in the principal-axis frame.

The coefficientsvn(h,s,n) can now be evaluated for dif
ferent values of the order parameters and a table with th
entries can be constructed. Values of the coefficients for
der parameters not in the table are obtained by interpolat
We have found that it is numerically more convenient
construct the table withhp ,sp ,c as entries, wherec is the
tilt angle and (hp ,sp) the uniaxial and biaxial order param
eters in the principal-axis frame, respectively. Transform
tion from one set to the other is obtained via the expressi
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h5hpP2~cosc!1
3

4
sp sin2 c,

s5hp sin2 c1
1

2
sp~11 cos2 c!,

n5hp sin 2c2
1

2
sp sin 2c. ~A7!

Another question is the number of Fourier components u
to represent the function. Clearlyṽeff(z;h,s,n) is an even
function of z, which means that only coefficients withn>0
are necessary. We have found that a reasonable accura
obtained using only 21 Fourier components.

2. Scaling of the system of parallel ellipsoids
for the smectic-C phase

Let us consider the weighted densities in Eq.~7!,

r̄n~r !5E dswn~s!r~r1s̃•s!. ~A8!

In the space-fixed system of Cartesian axes, we assume
the densityr(r ) varies only in thez direction. In the smectic-
C phase, the molecules are tilted by an anglec with respect
to the z axis. However, the tensors̃ is diagonal only in an
axis frame along the principal molecular axes, which are n
rotated with respect to the space-fixed axes by the anglec.

The argument of the density in the integrand of Eq.~A8!

is r1s̃•s[r1r 8 with r 85s̃•s. In the principal-axis frame
of the tilted moleculess̃ is diagonal. Let us denote the com
ponents ofr 8 and s in this frame by subscripts and supe
scriptsp, respectively, so that

S xp8

yp8

zp8
D 5S s'sx

p

s'sy
p

s isz
p
D . ~A9!

Now we calculate the corresponding components ofr 8 in the
original space-fixed axis frame. We assume that the dire
lies in thexz plane. By rotating about they axis by c, we
obtain

x85xp8 cosc1zp8 sinc,

y85yp8 ,

z852xp8 sinc1zp8 cosc. ~A10!

Substituting forxp8 andzp8 from Eq. ~A9!,

z852s'sx
p sinc1s isz

p cosc. ~A11!

Now the densityr(r1r 8) in Eq. ~A8! varies only in thez
direction, so we can write
d

y is

hat

w

or

r~r1r 8!5r~z1z8!, ~A12!

wherez8 is given by Eq.~A11!. We can do a further trans
formation of the vectors in Eq. ~A8!. Let us rotate from the
principal-axis frame back to a new frame, by an arbitrary~for
now! anglecp . Let us call the components ofs in this new
frame simply (sx ,sy ,sz). These will be related to the com
ponents (sx

p ,sy
p5sy ,sz

p) by the analogs of Eq.~A10!. The
inverse relations are

sx
p5sx coscp2sz sincp ,

sy
p5sy ,

sz
p5sx sincp1sz coscp . ~A13!

Note that this is an orthogonal transformation and con
quently the magnitude ofs is preserved, so thatwn(usu) is the
same function in both frames, and the Jacobian of the tra
formation is unity. On substituting Eq.~A13! into Eq.~A11!,
we obtain

z85sx~s i cosc sincp2s' sinc coscp!

1sz~s i cosc coscp1s' sinc sincp!. ~A14!

As mentioned,cp is arbitrary. It would be convenient if we
could choosecp so that the coefficient ofsx in Eq. ~A14! is
zero. This gives the equation

s i cosc sincp5s' sinc coscp ~A15!

or

tancp5
s'

s i
tanc. ~A16!

Remember thatc is the smectic-C tilt angle, which physi-
cally satisfies 0<c<p/2. Since~normally! s' /s i,1, we
can always find a unique solution of Eq.~A16! with 0<cp
<p/2. Now Eq.~A14! simplifies to

z85sz~s i cosc coscp1s' sinc sincp!

5szs i cosc coscpS 11
s'

s i
tanc tancpD . ~A17!

Using Eq.~A16! and trigonometric relations, this becomes

z85szs iAcos2 c1
s'

2

s i
2

sin2 c[szs i
eff . ~A18!

The identity in Eq.~A12!, which is in the integrand of Eq
~A8!, becomes

r~r1r 8!5r~z1szs i
eff!. ~A19!

This is analogous to the case of the smectic-A phase, but
with aneffectives i given by Eq.~24! in the text. Notice that
s i

eff5s i whenc50 while s i
eff5s' whenc5p/2.
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